School of Computer & Information Sciences

(A New GOFAI Theory: How Language Works)

(Wai Yeap/albert)

AUCKLAND UNIVERSITY OF TECHNOLOGY

School of Computer & Information Sciences

What is GOFAI? – a gentle reminder

School of Computer & Information Sciences

A GOFAI method – Marr's approach

School of Computer & Information Sciences

A GOFAI Theory of Human Language

School of Computer & Information Sciences

John and Jane

Men bite dogs

School of Computer & Information Sciences

We fed her chicken McNuggets.

They seem to enjoy boiling champagne.

Crain and Thornton 1998

School of Computer & Information Sciences

Psycholinguistic Theories of Language

No negative evidence - Baker's Paradox

Chomsky's universal grammar

Pinker's semantic bootstrapping

School of Computer & Information Sciences

What do children do when they learn their first language?

School of Computer & Information Sciences

School of Computer & Information Sciences

The significance of the split of the names into objects and actions lies not just in knowing how to distinguish words but more importantly knowing how different kinds of words are combined.

School of Computer & Information Sciences

Consider a simple phrase:

Mama Give

What could the algorithm be?

School of Computer & Information Sciences

A straightforward method:

Mama → [mama*]

Give → [give* (:actor ?L)]

School of Computer & Information Sciences

A more refined algorithm at a later stage:

Mama → [mama*]

Give → [give* (:actor ?L) (:object-of-desire ?R)]

School of Computer & Information Sciences

OK, a simple algorithm

Advantages – no use of rules that explicitly required the identification of categories. Categories (?L, ?R) are learned from meanings. No rigid formal rules.

Problem – can the algorithm be developed, powerful enough, to handle the full complexity of language use?

School of Computer & Information Sciences

The man the police wanted took the money

School of Computer & Information Sciences

How could the basic algorithm be extended to handle the complex variations in language and in ways which do not require information not made available as input to the (child's) process?

School of Computer & Information Sciences

The solution lies in one's ability to extend the initial ?L/?R labels for more sophisticated processing of semantics objects....or more appropriately, *Mental Sketches*.

School of Computer & Information Sciences

The language process:

School of Computer & Information Sciences

School of Computer & Information Sciences

The first step: taking the mental sketch from the left (?L+) and from the right (?R+)

Eat \rightarrow [eat* (:actor ?L+) (:what ?R+)]

School of Computer & Information Sciences

An extension: passing the information to the right

School of Computer & Information Sciences

3 kinds of ?R-

- Adjectives: (?R- (:modifier big*))
- Determiners: (?R-* (:modifier the*))

Pre-determiners: (?R-** (:modifier both*))

School of Computer & Information Sciences

School of Computer & Information Sciences

Another extension: passing the information to the left

School of Computer & Information Sciences

?L+ → ?L- (?L#)

I answered the question foolishly [answered* (:actor (I* (:noun)) (:what (questions* (:noun) (:modifier (the*)))) (:manner (foolishly*))]

I foolishly answered the question

School of Computer & Information Sciences

School of Computer & Information Sciences

?L+/?R+ → ?L-/?R+

I saw the car of John

[SAW* (:ACTOR (I* (:NOUN))) (:WHAT (CAR* (:NOUN) (:MODIFIER (THE*)) (:OF* (JOHN* (:PERSON (:NAME (JOHN*))))))]

School of Computer & Information Sciences

?L+/?R+ → ?L-/?R+

Connectives: (?L- (and* ?R+)) Prepositions: (?L- (of* ?R+)) Wh-words: (?L- (who* ?R+)) Be-verbs: (?L- (am* ?R+))

School of Computer & Information Sciences

Connectives: (?L- (and* ?R+)) Prepositions: (?L- (of* ?R+)) Wh-words: (?L- (who* ?R+)) Be-verbs: (?L- (am* ?R+))

How do we distinguish between them?

School of Computer & Information Sciences

An example: I saw John in the car park

Dictionary entries:

(defword I (I1) (I* (:role (speaker*)) (:word (I)))) (defword saw (saw1) (saw* (:actor ?L+) (:what ?R+))) (defword park (park1 park2) (park** (:noun)) (park* (:actor ?L+) (:what ?R+))) (defword in (in1 in2) (?L- (:in ?R+)) (?L# (:manner (in*))))

School of Computer & Information Sciences

An example: I saw John in the car park

[I* (:ROLE (:SPEAKER)) (:WORD (I))]

School of Computer & Information Sciences

An example: **I saw** John in the car park

[I* (:ROLE (:SPEAKER)) (:WORD (I))]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

School of Computer & Information Sciences

An example: **I saw John** in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN)))))]

School of Computer & Information Sciences

An example: **I saw John** in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

[JOHN* (:PERSON (:NAME (JOHN)))] [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

School of Computer & Information Sciences

An example: **I saw John** in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

[JOHN* (:PERSON (:NAME (JOHN)))]+ [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

School of Computer & Information Sciences

An example: I saw John in the car park

Current Mental Sketches

School of Computer & Information Sciences

An example: I saw John in the car park

Current Mental Sketches

School of Computer & Information Sciences

An example: I saw John in the car park

Current Mental Sketches

School of Computer & Information Sciences

An example: **I saw John in** the car park

Current Mental Sketches

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))) (:MANNER (IN*))]

[JOHN* (:PERSON (:NAME (JOHN))) (:IN* ?R+)] [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

An example: I saw John in the car park

School of Computer & Information Sciences

Auckland University of Technology »

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))) (:MANNER (IN*))]

(:IN* ?R+)] [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

An example: I saw John in the car park

[JOHN* (:PERSON (:NAME (JOHN)))

School of Computer & Information Sciences

Auckland University of Technology »

Institute for Information Technology Research

School of Computer & Information Sciences

An example: I saw John in the car park

[JOHN* (:PERSON (:NAME (JOHN))) (:IN* ?R+)] [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))) (:MANNER (IN*))]

School of Computer & Information Sciences

An example: I saw John in the car park

```
[?R-* (:MODIFIER (THE*))]
[JOHN* (:PERSON (:NAME (JOHN)))
(:IN* ?R+)]
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
(:WHAT ?R+)]
```


School of Computer & Information Sciences

An example: I saw John in the car park

```
[CAR* (:NOUN)]+

[?R-* (:MODIFIER (THE*))]

[JOHN* (:PERSON (:NAME (JOHN)))

(:IN* ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))

(:WHAT ?R+)]

[CAR* (:NOUN) (:MODIFIER (THE*))]
```

```
[CAR* (:NOUN) (:MODIFIER (THE*))]
[JOHN* (:PERSON (:NAME (JOHN)))
(:IN* ?R+)]
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
(:WHAT ?R+)]
```


School of Computer & Information Sciences

An example: I saw John in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN))) (:IN* (CAR* (:NOUN) (:MODIFIER (THE*))))]

School of Computer & Information Sciences

An example: I saw John in the car park

Current Mental Sketches

```
[SAW* (:ACTOR (I* ....)
(:WHAT (JOHN*)....)]
[CAR* (:NOUN)
(:MODIFIER (THE*))]
[]
[CAR*]+
[]
```


School of Computer & Information Sciences

An example: I saw John in the car park

Current Mental Sketches

School of Computer & Information Sciences

The set of labels created in my system:

School of Computer & Information Sciences

Summary

We offer a new theory of language. It has 3 components:

A set of ?L/?R labels (as opposed to formal categories)

A stack

A procedure for manipulating each set of labels (as opposed to formal rules). Each procedure has 2 distinct phases – an elimination phase and a construction phase

School of Computer & Information Sciences

Discussion: So, how does language work?

It begins by realizing that sounds/symbols have meanings.

When meanings of phrases are learned, one pays attention to positional information. The latter tells us how words meanings are moved between words. Knowing the meanings of each phrase then helps one to develop a set of routines to re-construct meanings of phrases.

I propose a labeling scheme and demonstrate that it is powerful enough to capture the grammar of the (English) language

School of Computer & Information Sciences

Categorial Grammar

John likes Jane n (n\s)/n n

Chris gave a fish to Tigger np ((s\np)/pp)/np np pp

School of Computer & Information Sciences

Future Work

Can this method be extended as a basis for describing all languages – is this a new universal grammar?

Can this method explain many of the interesting observations about language use?

Will this approach be a more powerful method for practical applications?

School of Computer & Information Sciences

Thank you for accepting this paper and of course for listening