(A New GOFAI Theory: How Language Works)

(Wai Yeap/albert)
What is GOFAI? – a gentle reminder
A GOFAI method – Marr’s approach

Intermediate representations

Input → R1 → R2 → … → Rn → Higher level knowledge

X
A GOFAI Theory of Human Language
John and Jane

Men bite dogs
We fed her chicken McNuggets.

They seem to enjoy boiling champagne.

Crain and Thornton 1998
Psycholinguistic Theories of Language

No negative evidence - Baker’s Paradox

Chomsky’s universal grammar

Pinker’s semantic bootstrapping
What do children do when they learn their first language?

- Concepts
- Names
- Objects
- Actions
The significance of the split of the names into objects and actions lies not just in knowing how to distinguish words but more importantly knowing how different kinds of words are combined.
Consider a simple phrase:

Mama Give

What could the algorithm be?
A straightforward method:

Mama \rightarrow [mama*]

Give \rightarrow [give* (:actor ?L)]
A more refined algorithm at a later stage:

Mama → [mama*]

Give → [give* (:actor ?L) (:object-of-desire ?R)]
OK, a simple algorithm

Advantages – no use of rules that explicitly required the identification of categories. Categories (?L, ?R) are learned from meanings. No rigid formal rules.

Problem – can the algorithm be developed, powerful enough, to handle the full complexity of language use?
The man the police wanted took the money
How could the basic algorithm be extended to handle the complex variations in language and in ways which do not require information not made available as input to the (child’s) process?
The solution lies in one’s ability to extend the initial ?L/?R labels for more sophisticated processing of semantics objects….or more appropriately, *Mental Sketches.*
The language process:

Words → Mental Sketches → Mental Picture
Input: \(w_1 \quad w_2 \quad w_3 \quad w_4 \)

Mental Sketches:
The first step: taking the mental sketch from the left (?L+) and from the right (?R+)

Eat → [eat* (:actor ?L+) (:what ?R+)]
Input: \(w_1 \ w_2 \ w_3 \ldots \)

Mental Sketches:

An extension: passing the information to the right
3 kinds of ?R-

Adjectives: (?R- (:modifier big*))

Determiners: (?R-* (:modifier the*))

Pre-determiners: (?R-** (:modifier both*))
Input: $w_1 \ w_2 \ w_3 \ldots$

Mental Sketches:
Input: w1 w2 w3 ……

Mental Sketches:

Another extension: passing the information to the left
I answered the question foolishly

I foolishly answered the question
Input: w1 w2 w3

Mental Sketches:

?L- ?R+
I saw the car of John

[SAW* (:ACTOR (I* (:NOUN)))
 (:WHAT (CAR* (:NOUN)
 (:MODIFIER (THE*))
 (:OF* (JOHN*)
 (:PERSON (:NAME (JOHN*)))))])
\(?L+/?R+ \rightarrow ?L-/?R+\)

Connectives: (\(?L- \text{ (and* } ?R+)\))

Prepositions: (\(?L- \text{ (of* } ?R+)\))

Wh-words: (\(?L- \text{ (who* } ?R+)\))

Be-verbs: (\(?L- \text{ (am* } ?R+)\))
Connectives: (?L- (and* ?R+))
Prepositions: (?L- (of* ?R+))
Wh-words: (?L- (who* ?R+))
Be-verbs: (?L- (am* ?R+))

How do we distinguish between them?
An example: I saw John in the car park

Dictionary entries:

(defword I (I1) (I* (:role (speaker*)) (:word (I)))))
(defword saw (saw1) (saw* (:actor ?L+) (:what ?R+)))
(defword park (park1 park2) (park** (:noun))
 (park* (:actor ?L+) (:what ?R+)))
(defword in (in1 in2) (?L- (:in ?R+))
 (?L# (:manner (in*))))
An example: I saw John in the car park

[I* (:ROLE (:SPEAKER)) (:WORD (I))]
An example: I saw John in the car park

[I* (:ROLE (:SPEAKER)) (:WORD (I))]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]
An example: I saw John in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))) (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))) (:WHAT (JOHN* (:PERSON (:NAME (JOHN)))))]

An example: I saw John in the car park

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

[JOHN* (:PERSON (:NAME (JOHN)))]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I)))) (:WHAT ?R+)]

An example: *I saw John* in the car park

```
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]
```

```
[JOHN* (:PERSON (:NAME (JOHN))))]+
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]
```
An example: *I saw John in the car park*

Current Mental Sketches

\[
[S\text{AW}* (:\text{ACTOR} (I* \ldots))

(\text{:WHAT} (\text{JOHN}*)))
\]

Next inputs

\[
(?L- (:\text{in}^* ?R+))
\]

\[
(?L- (:\text{manner} (\text{in}^*))])
\]

\[
[\text{JOHN}*] +

[]
\]

\[
[\text{JOHN}*]+

[]
\]

\[
[\text{JOHN}*]

[]
\]
An example: I saw John in the car park

Current Mental Sketches

[SAW* (:ACTOR (I*)) (:WHAT (JOHN*))]

Next inputs

(?L- (:in* ?R+))

(?L- (:manner (in*)))
An example: I saw John in the car park

Current Mental Sketches

[SAW* (:ACTOR (I*))
 (:WHAT (JOHN*))]

[JOHN*]
[]

Next inputs

(?L- (:in* ?R+))

(?L- (:manner (in*))))
An example: I saw John in the car park

Current Mental Sketches

[SAW* (:ACTOR (I* …..))
 (:WHAT (JOHN*))]

[JOHN*]
[]

Next inputs

(?L- (:in* ?R+))

(?L- (:manner (in*)))
An example: I saw John in the car park

[JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))
 (:MANNER (IN*)))]
An example: I saw John in the car park

[JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))
 (:MANNER (IN*)))]
An example: I saw John in the car park

[JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]

[SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))
 (:MANNER (IN*)))]
An example: I saw John in the car park

[?R-* (:MODIFIER (THE*))]
[JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
[SAY* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]
An example: I saw John in the car park

[CAR* (:NOUN)]+
[?R-* (:MODIFIER (THE*))]
 [JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
 [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]

[CAR* (:NOUN) (:MODIFIER (THE*))]
 [JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
 [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]

[CAR* (:NOUN)]+
[?R-* (:MODIFIER (THE*))]
 [JOHN* (:PERSON (:NAME (JOHN)))
 (:IN* ?R+)]
 [SAW* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT ?R+)]
An example: I saw John in the car park

[SAY* (:ACTOR (I* (:ROLE (:SPEAKER)) (:WORD (I))))
 (:WHAT (JOHN* (:PERSON (:NAME (JOHN))))
 (:IN* (CAR* (:NOUN)
 (:MODIFIER (THE*)))))]
An example: I saw John in the car park

Current Mental Sketches

[SAW* (:ACTOR (I*) (:WHAT (JOHN*))....)]

[CAR* (:NOUN) (:MODIFIER (THE*))]

[]

[]

Next inputs

(PARK* (:NOUN))
An example: I saw John in the car park

Current Mental Sketches

[SAW* (:ACTOR (I*) (:WHAT (JOHN*)....)]

[CAR* (:NOUN) (:MODIFIER (THE*))]

[]

[CAR*]+ []

Next inputs

(PARK* (:NOUN))
The set of labels created in my system:

\[\text{Higher order: MS: } ?R+ \]
Summary

We offer a new theory of language. It has 3 components:

A set of ?L/?R labels (as opposed to formal categories)

A stack

A procedure for manipulating each set of labels (as opposed to formal rules). Each procedure has 2 distinct phases – an elimination phase and a construction phase
Discussion: So, how does language work?

It begins by realizing that sounds/symbols have meanings.

When meanings of phrases are learned, one pays attention to positional information. The latter tells us how words meanings are moved between words. Knowing the meanings of each phrase then helps one to develop a set of routines to re-construct meanings of phrases.

I propose a labeling scheme and demonstrate that it is powerful enough to capture the grammar of the (English) language.
Categorial Grammar

John likes Jane
n (n\s)/n n

Chris gave a fish to Tigger
np ((s\np)/pp)/np np pp
Future Work

Can this method be extended as a basis for describing all languages – is this a new universal grammar?

Can this method explain many of the interesting observations about language use?

Will this approach be a more powerful method for practical applications?
Thank you for accepting this paper and of course for listening