
1

1

Functional Programming for Signal Processing:

There’s More to Life than Inner Loops

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University

Copyright 2005, Roger B. Dannenberg2

Introduction

� Computer Music
– has demanding computational requirements
– has demanding requirements for expressivity
– has given rise to many language innovations

� Dataflow computing
� Temporal semantics
� Visual programming for novice programmers

� Nyquist is a functional programming language
for sound synthesis and music composition

2

Copyright 2005, Roger B. Dannenberg3

Overview

� A Model for Computer Music Synthesis:
– The structure of sound synthesis programs

� The Model in Functional Terms
� Efficient Inner Loops
� Expressiveness and Efficiency
� Conclusion

Copyright 2005, Roger B. Dannenberg4

A Model for Computer Music
Synthesis

� What to compute?
� Simple example

– Assume an array w[0..N-1] with
one waveform period

– s(t) = w[� (t × f × N) � mod N]
– Evaluate at discrete time points, t = i / r

3

Copyright 2005, Roger B. Dannenberg5

Combining Functions

� Let’s multiply by an envelope to avoid sudden
on/off:

� e(t) = if t < 0.1 then t / 0.1
elif t < 1.1 then 1.1 − t
else 0.0

� c(t) = s(t) e(t)

0

0

0

time

am
pl

itu
de

Copyright 2005, Roger B. Dannenberg6

Unit Generators

� Since everything is a
function of time, we can
drop the t.

� We refer to signal
generating and signal
processing primitives as
unit generators.

Envelope
Generator

Oscillator

4

Copyright 2005, Roger B. Dannenberg7

Implementation - Traditional

Envelope
Generator

Oscillator
1.

2.

3.

Copyright 2005, Roger B. Dannenberg8

The Model In Functional Terms

(multiply (waveform table freq)
(envelope))

Envelope
Generator

Oscillator

5

Copyright 2005, Roger B. Dannenberg9

The SOUND Data Type

time

t0

logical stop time
termination time

scale
factor

sample rate

To the user: just a function of time.

Copyright 2005, Roger B. Dannenberg10

Nyquist Implementation – Data
Structure

Sample
Block

Sample
Block

Sample
Block

Sample
Block

Suspended Sample
Stream Generator

Reader
Object

Reader
Object

Next block is
added herePreviously read blocks

are returned to heap

6

Copyright 2005, Roger B. Dannenberg11

SOUND Data Type – 1

Suspended Sample
Stream Generator

Reader
Object

Copyright 2005, Roger B. Dannenberg12

SOUND Data Type – 2

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

7

Copyright 2005, Roger B. Dannenberg13

SOUND Data Type – 3

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Copyright 2005, Roger B. Dannenberg14

SOUND Data Type – 4

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

8

Copyright 2005, Roger B. Dannenberg15

SOUND Data Type – 5

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Copyright 2005, Roger B. Dannenberg16

SOUND Data Type – 6

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

9

Copyright 2005, Roger B. Dannenberg17

SOUND Data Type – 1b

Suspended Sample
Stream Generator

Reader
Object

Reader
Object

Copyright 2005, Roger B. Dannenberg18

SOUND Data Type – 2b

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Reader
Object

10

Copyright 2005, Roger B. Dannenberg19

SOUND Data Type – 3b

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Reader
Object

Copyright 2005, Roger B. Dannenberg20

SOUND Data Type – 4b

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Reader
Object

11

Copyright 2005, Roger B. Dannenberg21

SOUND Data Type – 5b

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Reader
Object

Copyright 2005, Roger B. Dannenberg22

SOUND Data Type – 6b

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Sample
Block

Reader
Object

12

Copyright 2005, Roger B. Dannenberg23

A SOUND Expression

(multiply (waveform table freq)
(envelope))

Suspended
multiply

Reader
Object

Sample
Block

Reader
Object

Suspended
waveform

Sample
Block

Reader
Object

Suspended
envelope

Sample
Block

Copyright 2005, Roger B. Dannenberg24

Implementation - Traditional

Envelope
Generator

Oscillator
1.

2.

3.

13

Copyright 2005, Roger B. Dannenberg25

Efficient Inner Loops – 1

(PROD-ALG
(NAME "prod")
(ARGUMENTS ("sound_type" "s1")

("sound_type" "s2"))
(START (MAX s1 s2))
(TERMINATE (MIN s1 s2))
(COMMUTATIVE (s1 s2))
(LINEAR s1 s2)
(INNER-LOOP "output = s1 * s2")

)

Copyright 2005, Roger B. Dannenberg26

Efficient Inner Loops – 2

Get samples from s1 and s2
Calculate n, the number of samples ready to process

if (n) do { /* the inner sample computation loop */

*out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;

} while (--n); /* inner loop */

Repeat until we have a full output buffer
Then save state in the suspension object and return

14

Copyright 2005, Roger B. Dannenberg27

Expressiveness and Efficiency

� Compiled inner loops and large blocks (about
1K) make Nyquist about as efficient as C code

� Language expressiveness can make Nyquist
significantly faster than C code alone.

Copyright 2005, Roger B. Dannenberg28

Mixed Sample Rates

� Control signals:
– Amplitude envelopes
– Vibrato
– Filter coefficients

� … can be computed at low sample rates.
� Nyquist supports mixed sample rates
� Linear interpolation within inner loops

– Machine generated code is essential here
� By calculating everything in terms of time and thinking

of sounds as functions of time (rather than vectors),
mixed sample rates are not apparent to users.

15

Copyright 2005, Roger B. Dannenberg29

Sample Accuracy

� In many synthesis systems, time is quantized to
boundaries of fixed-length sample blocks

� This forces blocks to be small
� Nyquist uses variable-length blocks so all sounds are

timed to within 0.5 sample, even with large blocks
� Allows better amortization of overhead

Copyright 2005, Roger B. Dannenberg30

Scores and Instruments – 1

“Score”
Time Dur Instr Parameters
0 1.5 flute c#, -5db, …
1.5 0.5 flute d, -5db, …
2.0 1.0 flute f#, -10db, …
1.5 1.5 sax a, -10db, …
…

“Orchestra”

Instrument “flute”:

Instrument “sax”:

How to synthesize a
“flute” sound

How to synthesize a
“sax” sound

16

Copyright 2005, Roger B. Dannenberg31

Scores and Instruments – 2

� Nyquist has temporal semantics, no need for separate
score language:
– (seq a b …) makes sequence of sounds a, b, …
– (sim a b …) mixes (add) simultaneous sounds
– (at t a) shifts a to time t
– (stretch d a) stretches a by d

� So sequential and score-like behavior can be
embedded anywhere

– E.g. (seq (attack) (sustain) (release))

� Much more efficient to schedule changes in outer loop
than within inner loops

Copyright 2005, Roger B. Dannenberg32

(seq (attack) (sustain) (release))

Suspended
seq

Reader
Object

Reader
Object

Suspended
(attack)

Sample
Block

Closure:
(seq (sustain)

(release))

17

Copyright 2005, Roger B. Dannenberg33

Using Language Features

� Polymorphism
– (lp (noise) 500)

– (lp (noise) (sweep 500 1000))

� Closures
– (seq (crash) (boom) (bang))

� Macros
– seq, transpose, stretch, at

Copyright 2005, Roger B. Dannenberg34

Some Examples

� Granular Synthesis
– What are the parameters?
– Are the details hidden?

� “Tail Iteration”
– (defun drum-roll ()

(seq (drum-stroke) (drum-roll)))

18

Copyright 2005, Roger B. Dannenberg35

Conclusions

� Nyquist is based on XLisp, with a new datatype: SOUND
� SOUND allows programmers to express sound

computation using nested expressions
� Lazy evaluation automatically reduces expression trees

to an efficient “standard model” of unit generators and
buffers

� Further efficiency is obtained through:
– Automatically translated inner loops
– Highly expressive language (temporal semantics, mixed sample

rates, etc.)
� Nyquist is both highly expressive and highly efficient

