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Introduction

� Computer Music
– has demanding computational requirements
– has demanding requirements for expressivity
– has given rise to many language innovations

� Dataflow computing
� Temporal semantics
� Visual programming for novice programmers 

� Nyquist is a functional programming language 
for sound synthesis and music composition
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Overview

� A Model for Computer Music Synthesis: 
– The structure of sound synthesis programs

� The Model in Functional Terms
� Efficient Inner Loops
� Expressiveness and Efficiency
� Conclusion
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A Model for Computer Music 
Synthesis

� What to compute?
� Simple example

– Assume an array w[0..N-1] with 
one waveform period

– s(t) = w[ � (t × f × N) � mod N ]
– Evaluate at discrete time points, t = i / r
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Combining Functions

� Let’s multiply by an envelope to avoid sudden 
on/off:

� e(t) = if t < 0.1 then t / 0.1
elif t < 1.1 then 1.1 − t
else 0.0

� c(t) = s(t) e(t)
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Unit Generators

� Since everything is a 
function of time, we can 
drop the t.

� We refer to signal 
generating and signal 
processing primitives as 
unit generators.

Envelope
Generator

Oscillator
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Implementation - Traditional

Envelope
Generator

Oscillator
1.

2.

3.
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The Model In Functional Terms

(multiply (waveform table freq) 
(envelope))

Envelope
Generator

Oscillator
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The SOUND Data Type

time

t0

logical stop time
termination time

scale
factor

sample rate

To the user: just a function of time.
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Nyquist Implementation – Data 
Structure

Sample
Block

Sample
Block

Sample
Block

Sample
Block

Suspended Sample
Stream Generator

Reader
Object

Reader
Object

Next block is
added herePreviously read blocks

are returned to heap
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SOUND Data Type – 1

Suspended Sample
Stream Generator

Reader
Object
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SOUND Data Type – 2 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block



7

Copyright 2005, Roger B. Dannenberg13

SOUND Data Type – 3 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block
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SOUND Data Type – 4 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block
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SOUND Data Type – 5 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block
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SOUND Data Type – 6

Suspended Sample
Stream Generator

Reader
Object

Sample
Block
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SOUND Data Type – 1b

Suspended Sample
Stream Generator

Reader
Object

Reader
Object
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SOUND Data Type – 2b 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Reader
Object
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SOUND Data Type – 3b 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Reader
Object
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SOUND Data Type – 4b 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Reader
Object
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SOUND Data Type – 5b 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Reader
Object
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SOUND Data Type – 6b 

Suspended Sample
Stream Generator

Reader
Object

Sample
Block

Sample
Block

Sample
Block
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A SOUND Expression

(multiply (waveform table freq) 
(envelope))

Suspended
multiply

Reader
Object

Sample
Block

Reader
Object

Suspended
waveform

Sample
Block

Reader
Object
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envelope

Sample
Block
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Implementation - Traditional

Envelope
Generator

Oscillator
1.

2.

3.



13

Copyright 2005, Roger B. Dannenberg25

Efficient Inner Loops – 1

(PROD-ALG
(NAME "prod")
(ARGUMENTS ("sound_type" "s1")

("sound_type" "s2"))
(START (MAX s1 s2))
(TERMINATE (MIN s1 s2))
(COMMUTATIVE (s1 s2))
(LINEAR s1 s2)
(INNER-LOOP "output = s1 * s2")

)
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Efficient Inner Loops – 2

Get samples from s1 and s2
Calculate n, the number of samples ready to process 

if (n) do { /* the inner sample computation loop */

*out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;

} while (--n); /* inner loop */

Repeat until we have a full output buffer
Then save state in the suspension object and return
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Expressiveness and Efficiency

� Compiled inner loops and large blocks (about 
1K) make Nyquist about as efficient as C code

� Language expressiveness can make Nyquist 
significantly faster than C code alone.
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Mixed Sample Rates

� Control signals:
– Amplitude envelopes
– Vibrato
– Filter coefficients

� … can be computed at low sample rates.
� Nyquist supports mixed sample rates
� Linear interpolation within inner loops

– Machine generated code is essential here
� By calculating everything in terms of time and thinking 

of sounds as functions of time (rather than vectors), 
mixed sample rates are not apparent to users.
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Sample Accuracy

� In many synthesis systems, time is quantized to 
boundaries of fixed-length sample blocks

� This forces blocks to be small
� Nyquist uses variable-length blocks so all sounds are 

timed to within 0.5 sample, even with large blocks
� Allows better amortization of overhead
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Scores and Instruments – 1

“Score”
Time Dur Instr Parameters
0       1.5  flute c#, -5db, …
1.5     0.5 flute d, -5db, …
2.0     1.0 flute f#, -10db, …
1.5     1.5 sax  a, -10db, …
…

“Orchestra”

Instrument “flute”:

Instrument “sax”:

How to synthesize a
“flute” sound

How to synthesize a
“sax” sound



16

Copyright 2005, Roger B. Dannenberg31

Scores and Instruments – 2

� Nyquist has temporal semantics, no need for separate 
score language:
– (seq a b …) makes sequence of sounds a, b, …
– (sim a b …) mixes (add) simultaneous sounds
– (at t a) shifts a to time t
– (stretch d a) stretches a by d

� So sequential and score-like behavior can be 
embedded anywhere

– E.g. (seq (attack) (sustain) (release))

� Much more efficient to schedule changes in outer loop 
than within inner loops
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(seq (attack) (sustain) (release))

Suspended
seq

Reader
Object

Reader
Object

Suspended
(attack)

Sample
Block

Closure:
(seq (sustain)

(release))
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Using Language Features

� Polymorphism
– (lp (noise) 500)

– (lp (noise) (sweep 500 1000))

� Closures
– (seq (crash) (boom) (bang))

� Macros
– seq, transpose, stretch, at
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Some Examples

� Granular Synthesis
– What are the parameters?
– Are the details hidden?

� “Tail Iteration”
– (defun drum-roll ()

(seq (drum-stroke) (drum-roll)))
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Conclusions

� Nyquist is based on XLisp, with a new datatype: SOUND
� SOUND allows programmers to express sound 

computation using nested expressions
� Lazy evaluation automatically reduces expression trees 

to an efficient “standard model” of unit generators and 
buffers

� Further efficiency is obtained through:
– Automatically translated inner loops
– Highly expressive language (temporal semantics, mixed sample 

rates, etc.)
� Nyquist is both highly expressive and highly efficient


