by Streams and Lazy
Evaluation

T i (
i-dialogue
?
Modeling Agent Conversation)

Clement Jonguet & Stefano A. Cerri

Laboratoire !’
* « d’Informatique
> de Robotique
=== etde Microélectronique
de Montpellier

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

UNIVERSITE MOMTPELLIER Il

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

Context - Interaction modeling

~

In DAl and MAS communities: interacting entities
interaction + autonomy + intelligence = agents

To enhance agent’s autonomy

Communicate without knowing something about the other

Managing the entire conversation dynamically

|-dialogue = abstraction of interaction inspired:
The dialogue abstraction [obonnel, 1985
The STROBE agent model [Cerri, 1999; Jonquet, 2004]

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

Speech overview

Agent communication and
conversation modeling

|| cfp |
- clion _ A

The dialogue abstraction (AGENT,

'l ENV? ENV}!

The + dblogue abstraction T

The STROBE model

¢ St v
——

Providing services applications

Conclusion and perspectives

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

Agent communication

_

ACLs (speech act
oriented, FIPA, KOML) crion

preconditionst

]

not-under stood refuse propose
reason preconditions2

Commun|cat|0n reject- proposal

accept-proposal
preconditions3 reason

reject-proposal

protocols (FSM, Petri

f ilure rfu

© Semantics
® Reduce agent autonomy

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

The dialogue abstraction (1/2)

Interactive session Each agent computes a
between 2 agents, which new state and a new
take turns sending output from its previous
messages to each other: state and the last input it

received from the other
agent, using its transition
function:

f5 : [Oéj+k fﬁ} — [Oéj+k+1 Oé}

£ (B IR | = Bt OE]/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

The dialogue abstraction (2/2)

Applicative/Functional programming constructs:
Higher order functions
Streams [Abelson and Sussman, 1996] [...]
Lazy evaluation [Landin, 1965] [Friedman and Wise, 1976] [...]

The dialogue function take 4 parameters and
returns 3 values:

Agent A: dialogue : (I o f Ra) — (I Og val)

\ Agent B: dialogue : {I5 5o f5 Re) — (I7 Of wval) /

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

~

The dialogue function

dralogue C

result”)
in
run : (inputs initial-state)

inputs initial-state step-fen result-fen

letrec
run = \ (inputs
let

has 4
parameters

stef-fen : (inputs state) Transition function

applied recursively
on inputs and state
and produces
outputs, new state,
unused-inputs, and
a boolean

in

(inputs” future-outputs” resultX
run : (inputs’ state’)
in
(inputs” returns 3
append-ll : (outputs’ future-outputs”) elements

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

The dialogue abstraction limits

Distributed systems: more than 2 agents.

Several dialogue (serially or in parallel) do not
model conversation among several agents

Interpretation of one agent inputs produces not
the outputs for this agent but another outputs
Intended to another agent.

_ /

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

The i1-dialogue abstraction

‘ -7
s
’
1
v’
-
_-
-="
~
~
~
N
\
\
1
\
C '
1 \
~
~
S

Modeling intertwined-dialogue
Conversations between an agent and a group of agents

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

The 3 agents case

Agent B should consumes 2 input streams and
produces 2 output streams

Transition functions of B, do not produce respectively
an output stream for A and B but the opposite

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

The trialogue function

ing inc init-s s-fena s-fenc r-fen

trialogue
letrec
run = A (ing inc state) .

let d | has 6
'y ouly state’) = - : {ina stat
£ (in)y oule state’ done’) = s-fena : (ina state) parameters
if done’
then (iny inc null o r-fen:state’)
else
let Different transition function

(ing out) state” done”) =
s-fenc : (ing state’)

if done”
thei@uﬁq outr r-femistate”
else

let
(in'y iné: f-outy f-outt: result” N
run : {in'y ing state”)

applied in the given order on
the different inputs and state
and produce different
outputs, new states, and
different unused-inputs, and
booleans

in

in
N
(inly ing

append-ll : {out, f-out)) returns 5

append-ll : {outr f-out) elements
result”)
in
run : (ina inc wnit-s)

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

The i1-dialogue function

Generalization of the function trialogue:
List of inputs,
List of transition functions.

Classic list recursion !

The ordering of the elements of the lists corresponds to the
semantics

For agent B in the previous figure:
i-dialogue : <<J§1§1 ...I&L) Bo (fEfCB1 ...fgn) RgB)
k — (IB1E .. 18) (0B 0E ...08) val) /

-

The STROBE model

~

Agent communication and representation
model

STReams of messages exchanged by
agents represented as OBjects and
Interpreted in multiples Environments

Scheme specification/implementation

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

STROBE Agent architecture (1/2)

ENV: Cognitive Environments (as knowledge
base and context of evaluation of messages)

INT: Cognitive Interpreters included in ENV

Agents as interpreters: map the classical REP
loop from FP to REPL

l.e: map the context of evaluation (eval e r) of
K Scheme expressions to interpretation of messages /

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

STROBE Agent architecture (2/2)

~

AGENT,
ENV! ENV;
ENV/
MEN,
MEN,
MESSAGE BOX S(]:J):ENSSI]_I,ER
BEHAVIOUR LEI?[_I?]_I?]I_:,ISG

I-DIALOGUE

ENV! BIND,
IN }. O UTJI {(var,val)*}
“““““““““““““““ INT!
BIND, | INT!
. A: EXP — evaluate,(EXP,ENV})

Mental states = agent own objectives,
tendencies, behaviour, reasoning rules etc.

X local item dedicatedto Y

: X _
With, ITEMy = { X global item

it X#£Y
if X=VY

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

Message interpretation

AGENT,

ENV

ENV;

ENV/

AGENT,

AGENT,

ENVS

ENV;

ENV

2

3

ENVY ENV?

ENV?

Messages’ interpretation is done:
In a given environment
with a given interpreter
both dedicated to the interlocutor
both able to change

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

STROBE / i-dialogue integration

~

_

Seeing the Cognitive Interpreters of
STROBE as the transition functions
(step-fcns) of I-dialogue.

=» Changing step-fcns dynamically while
communicating (i.e. during message
Interpretation)

/

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

4 h

Providing service applications

An agent executing an i-dialogue function provides a
service realized by its stef-fcns

I-dialogue models the composition of all the services
3

! § /Airplane
User Ticket
2 / .

»
»

Hotel
Agenc)
K g y Reservation /

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

-

Dynamic Service Generation

~

Opposed to classical product delivery

Buying ready-to-wear clothes having clothes made
by a tailor

Services constructed on the fly by the
provider according to the conversation it has
with the user.

=» Importance of the communication model

STROBE developed as a toolkit for DSG

=» Highly dynamic service with on the fly modification of
the step-fcns

-

Conclusions and perspectives

~

3 main contributions:

To spread the elegant dialogue abstraction to more complex situations
implying several entities

To consider this abstraction for agent communication as it was
suggested by STROBE

To open a new kind of consideration in service generation

2 main advantages:
Not reduce agent’'s autonomy
Allows to deal with the entire conversation

2 main perspectives:
Achieve the in progress integration with the STROBE model
Dynamic ordering of the inputs and step-fcns lists from i-dialogue

(International Lisp Conference 2005 — Stanford University — June 19-22, 2005)

