The GCL ANSI Common Lisp Test Suite

Paul Dietz
Motorola Global Software Group

Outline of Talk

Goals

Conformance tests

Specialized testers

Comments on X3.226

Goals

Primary goal:

Produce a tool for assisting implementors in achieving
and maintaining compliance with the ANSI CL standard.

Secondary goals:

e Familiarize myself with the CL standard

e EXxplore testing methods

e lTest the standard itself

Non-Goals

e Measuring compliance

e Ranking implementations by compliance

e Changing the CL standard

sources

e Harlequin/Lispworks Common Lisp Hyperspec — derived from
the ANS X3.226 standard

e Feedback from implementors

e Discussions on comp.lang.lisp, email

Implementations Tested

Allegro CL (6.2 and 7.0; x86, Sparc, Power)

Armed Bear Common Lisp (ABCL) (JVM on x86)
CLISP (x86)

CMU CL (x86)

ECL (x86)

GNU Common Lisp (GCL) (x86, other Debian platforms)
Lispworks 4.* (x86)

Open MCL (Power)

Steel Bank CL (x86, Sparc, Power, Alpha, MIPS)

Implementations Not Tested

Symbolics

Liquid Common Lisp
Xerox Common Lisp
WCL

Corman Common Lisp
Scieneer Common Lisp

Sacla

Waters' RT package

(deftest name form expected-values...)

(deftest plus.1 (+) 0)

(deftest flet.4

(block %f
(flet ((%4f (&optional (x (return-from %f :good)))
nil))
(hf)
:bad))

:good)

> (do-test ’decf.order.4)
Test DECF.ORDER.4 failed
Form: (LET ((X 0))
(PROGN "See CLtS 5.1.3"
(VALUES (DECF X (SETF X 1)) X)))
Expected values: O
0

Actual values: -1

-1.
NIL

Changes to RT

Optionally catch errors (treat as failure)

Optionally compile forms

Expected results compared with EQUALP-WITH-CASE

Test annotation

Expected failures

O(n) time, n = number of tests

10

Section Size | Tests | Section Size | Tests
Arrays 212623 | 1109 | Pathnames 47100 215
Characters 38655 256 | Printer 454314 | 2364
Conditions 71250 658 | Reader 101662 663
cons 264208 | 1816 | Sequences 562210 | 3219
D/C Flow 185973 | 1217 | Streams 165956 796
Environment 51110 206 | Strings 83982 415
Eval/Compile | 41638 234 | Structures 46271 | 1366
Files 26375 87 | Symbols 106063 | 1141
Hash Tables 38752 158 | System Cons. 16909 77
Iteration 08339 767 | 'Types 104804 599
Numbers 290991 | 1382 | Misc 291883 679
Objects 283549 774 | Infrastructure | 115090

Packages 162203 493 | Random 190575

11

Found 219 bugs, fixed in releases 0.7.8 to 0.9.0

Example of Bugs Found: SBCL

Kind Bugs | Kind Bugs | Kind Bugs
Type Inf 13 | Symbols 1 | Hash Tables 3
Compiler 20 | Packages 3 | Filenames 3
Reader 5 | Numbers 17 | Files 4
Types 16 | Characters O | Streams 17
Eval/DCF 15 | Cons 10 | Printer 29
Iteration 10 | Arrays 8 | Sys. Con. 1
Objects 26 | Strings 0 | Conditions 3
Structures 4 | Sequences 6 | Environment 0

12

Testing Strategies

e Simple tests.
Most tests in suite are of this kind.

e Exhaustive tests.

Confirm some predicate applies to all elements of some large
set.

e Randomized tests.

Evade combinatorial explosion by random sampling of a test
space.

13

Common idiom: confirm some property holds for ‘all’ lisp values

(deftest sxhash.1
(loop for x in *universex
for hash-code = (sxhash x)

unless (typep hash-code ’(and unsigned-byte fixnum))
collect x)
nil)

This test found a bug in SBCL!

14

Randomized Tests

Myers (in The Art of Software Testing):

Others have had good results:

“Probably the poorest ...

Miller's ‘fuzz testing’
McKeeman (C compilers)
Slutz (SQL systems)

Lindig (C procedure calls)

methodology of all.”

15

Objections to Randomized Testing

e Inefficient

— Optimizes test creation vs. test execution

e Irreproducible
— Common bugs recur anyway

— Properly designed tests report failing inputs

16

Objections to Randomized Testing (cont.)

e Ignores knowledge of program being tested.
— Knowledge may not be available (black box testing)
— May be wrong or misleading

— Semi-random tests can incorporate knowledge

17

Randomized Tests (continued)

Tests of functions with many keyword arguments

Print/read consistency of random objects

Random math operands

Subtypes

Compiler tests

18

Print/Read Consistency

Bind printer control variables to random values.

Bind *xPRINT-READABLY* to true.

Print random objects, read again.

Confirm that objects are ‘similar’.

19

Subtypes

e Generate random types 17, 1>.

e If 77 C T5 and SUBTYPEP succeeds, check:

1> C'T
TiNT>, CO
TCTiUTy

o If 77 Z T and SUBTYPEP succeeds, check:

T> T4

20

(let ((t1 ’(not (not t)))
(t2 ’(or rational t)))
(values

(multiple-value-list (subtypep t1 t2))

(multiple-value-list (subtypep ‘(and ,t1 (not ,t2)) nil))))
==>
(T T)
(NIL T)

21

Compiler Testing

Behavior-preserving transformations are opportunities for ran-
dom testing.

e Type declarations

e THE forms

e OPTIMIZE settings

e INLINE and NOTINLINE

e EVAL vs. COMPILE

22

Tests of Type Propagation/Inference

e Type inference very useful for efficient lisp compilation.
— Unboxing
— Elimination of runtime dispatch

— Folding runtime type checks, bounds checks

e Not well tested by usual tests in suite

23

Testing of Type Propagation (continued)

Strategy:

e For some function F', generate random arguments zq, ..., .
e EVAL (Fxq...71).

e (Generate a lambda form with:

— Some subset of the parameters as formal parameters
— Random optimize levels

— Random declaration of formal parameter types

— Random THE forms.

e Compile, apply, and compare results.

24

(def-type-prop-test |+.1| ’+ ’(integer integer) 2)

;33 Form: +
; 35 Parameters: -635 -221
;3 ; Lambda form:
(lambda (p1)
(declare (optimize (speed 1) (safety 1) (debug 1) (space 2))
(type (integer -4730 9617) pl))
(+ (the (integer * 862277) pl) -221))

25

(funcall (compile nil
>(lambda () (declare (optimize debug)) (symbolp -86755))))

==> segmentation violation

(compile nil ’(lambda (x) (declare (type (member 4 -1) x)
(optimize speed (safety 1)))
(isqrt x)))
==> "Error: -1 is illegal argument to isqrt"

26

(compile nil ’(lambda (p1l)
(declare (optimize (speed 1) (safety 2)
(debug 2) (space 0))
(type keyword pl))
(keywordp p1)))
==> failed AVER: "(EQ CHECK SIMPLE)"

27

Random Compiler Stress Tester

Generate random integer-valued form with integer arguments.

Wrap in two lambda forms
— One with type declarations, the other with none.

— One has all Common Lisp functions declared NOTINLINE.

Compile and apply one, eval the other.

Are results the same?

28

Found bugs within seconds in all implementations.

Most failures were assertion failures, type errors, or incorrect
values.

Bugs that crashed the lisp were infrequent.

Many dead code, type inference bugs.

29

(funcall
(compile nil ’(lambda (b)
(declare (type (integer 8 22337) b))
(+ b 2607688420)))
100) ==> incorrect value

(funcall (compile nil
’(lambda () (flet ((%f12 () (unwind-protect 1))) 0))))
==> "The value NIL is not of type SB-C::NODE."

(labels ((%f17 (£17-1 £17-2
goptional (£17-3 (unwind-protect 178)))
483633925))
-661328075)
==> "The assertion (EQ (C::COMPONENT-KIND C:COMPONENT) :INITIAL)
failed."
30

Experience with CLISP

e Total of 14 compiler bugs found in CLISP by this tester.

e No current failures (except for bignum overflow).

e ~ 200 million random tests were run.

31

Automated Pruning

e Forms produced by the random compiler tester can be very
large.

e Pruner simplifies them to minimal forms, preserving failure.

e Minimal forms are usually small (but not always!)

e Pruner limits random forms.

To do: improve the pruner so more forms can be tested.
32

Comments on the Standard

e Some things were difficult to test.
— Too much freedom for the implementation (pathnames).
— Not well specified (floating point accuracy).

— Ambiguities.

e Unintended consequences:
— Type upgrading

— TYPE-QOF

33

(TYPE-OF 17) ==> FIXNUM

Is this compliant with the standard?

34

NoO!

“For any object that is an element of some built-in type
[...] the type returned is a recognizable subtype of that
built-in type.”

built-in type n. one of the types in Figure 4-2.

Figure 4.2 contains the type UNSIGNED-BYTE, which contains 17,
but is not a supertype of FIXNUM.

35

A Problem With UPGRADED-ARRAY-ELEMENT-TYPE

“A type is always a subtype of its upgraded array element
type. Also, if a type T, is a subtype of another type
Ty, then the upgraded array element type of T, must be

a subtype of the upgraded array element type of Tj.”
(section 15.1.2.1)

This implies:

If T, is the intersection of T3 and Ty, then
(U-A-E-T T) is equivalent to (U-A-E-T 1) N (U-A-E-T Ty).

36

e If (UNSIGNED-BYTE 8) and (SIGNED-BYTE 8) are specialized array
element types, then so must be (UNSIGNED-BYTE 7).

— SBCL required the addition of three more specialized in-
teger array element types.

e Since BIT and CHARACTER are specialized array element types,
then so must be NIL.

— A conforming lisp must have arrays specialized to hold
nothing!?

e Vectors of NIL-type are strings!

37

Future Work

Complete the test suite

Extend random compiler tester to more of Common Lisp

Random testing of CLOS

Test non-ANSI behaviors

38

Questions?

39

